Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{2}(5x-3)\cdot6x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5x-3}{2}\cdot6x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30x^2-18x}{2}\end{aligned} $$ | |
① | Step 1: Write $ 5x-3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot 5x-3 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{5x-3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 5x-3 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5x-3 }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ 6x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5x-3}{2} \cdot 6x & \xlongequal{\text{Step 1}} \frac{5x-3}{2} \cdot \frac{6x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 5x-3 \right) \cdot 6x }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 30x^2-18x }{ 2 } \end{aligned} $$ |