Tap the blue circles to see an explanation.
$$ \begin{aligned}0.0007(x+13)(x+9)xx(x-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0x+0)(x+9)xx(x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0x^2+0x+0x+0)xx(x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0xx(x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}0x^2(x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}0x^3+0x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}0\end{aligned} $$ | |
① | Multiply $ \color{blue}{0} $ by $ \left( x+13\right) $ $$ \color{blue}{0} \cdot \left( x+13\right) = 0x0 $$ |
② | Multiply each term of $ \left( \color{blue}{0x0}\right) $ by each term in $ \left( x+9\right) $. $$ \left( \color{blue}{0x0}\right) \cdot \left( x+9\right) = 0x^2 \cancel{0x} \cancel{0x}0 $$ |
③ | Combine like terms: $$ 0x^2 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,0 = 0 $$ |
④ | $$ 0 x x = 0 x^{1 + 1} = 0 x^2 $$ |
⑤ | Multiply $ \color{blue}{0x^2} $ by $ \left( x-8\right) $ $$ \color{blue}{0x^2} \cdot \left( x-8\right) = 0x^30x^2 $$ |
⑥ | Combine like terms: $$ 0 = 0 $$ |