Tap the blue circles to see an explanation.
$$ \begin{aligned}-9(y+1)+5y& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(9y+9)+5y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-9y-9+5y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4y-9\end{aligned} $$ | |
① | Multiply $ \color{blue}{9} $ by $ \left( y+1\right) $ $$ \color{blue}{9} \cdot \left( y+1\right) = 9y+9 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(9y+9 \right) = -9y-9 $$ |
③ | Combine like terms: $$ \color{blue}{-9y} -9+ \color{blue}{5y} = \color{blue}{-4y} -9 $$ |