Tap the blue circles to see an explanation.
$$ \begin{aligned}-6a^2\frac{b}{9}ab& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6a^2b}{9}ab \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6a^3b}{9}b \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6a^3b^2}{9}\end{aligned} $$ | |
① | Step 1: Write $ 6a^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6a^2 \cdot \frac{b}{9} & \xlongequal{\text{Step 1}} \frac{6a^2}{\color{red}{1}} \cdot \frac{b}{9} \xlongequal{\text{Step 2}} \frac{ 6a^2 \cdot b }{ 1 \cdot 9 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6a^2b }{ 9 } \end{aligned} $$ |
② | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{6a^2b}{9} \cdot a & \xlongequal{\text{Step 1}} \frac{6a^2b}{9} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 6a^2b \cdot a }{ 9 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6a^3b }{ 9 } \end{aligned} $$ |
③ | Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{6a^3b}{9} \cdot b & \xlongequal{\text{Step 1}} \frac{6a^3b}{9} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 6a^3b \cdot b }{ 9 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6a^3b^2 }{ 9 } \end{aligned} $$ |