Tap the blue circles to see an explanation.
$$ \begin{aligned}-4s^4+12s^3-2 \cdot \frac{s^2}{2}s& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4s^4+12s^3-s^2s \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4s^4+12s^3-s^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4s^4+11s^3\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 2 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{s^2}{2} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{s^2}{2} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{s^2}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot s^2 }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ s^2 }{ 1 } =s^2 \end{aligned} $$ |
② | $$ 1 s^2 s = s^{2 + 1} = s^3 $$ |
③ | Combine like terms: $$ -4s^4+ \color{blue}{12s^3} \color{blue}{-s^3} = -4s^4+ \color{blue}{11s^3} $$ |