Tap the blue circles to see an explanation.
$$ \begin{aligned}-4(x+3)+2(x^2-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(4x+12)+2x^2-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x-12+2x^2-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2-4x-14\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x+3\right) $ $$ \color{blue}{4} \cdot \left( x+3\right) = 4x+12 $$Multiply $ \color{blue}{2} $ by $ \left( x^2-1\right) $ $$ \color{blue}{2} \cdot \left( x^2-1\right) = 2x^2-2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(4x+12 \right) = -4x-12 $$ |
③ | Combine like terms: $$ -4x \color{blue}{-12} +2x^2 \color{blue}{-2} = 2x^2-4x \color{blue}{-14} $$ |