Tap the blue circles to see an explanation.
$$ \begin{aligned}-4(x^2-9)(x-4)& \xlongequal{ }-(4x^2-36)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(4x^3-16x^2-36x+144) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^3+16x^2+36x-144\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x^2-36}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{4x^2-36}\right) \cdot \left( x-4\right) = 4x^3-16x^2-36x+144 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(4x^3-16x^2-36x+144 \right) = -4x^3+16x^2+36x-144 $$ |