Tap the blue circles to see an explanation.
$$ \begin{aligned}-4(x^2-2)+6(x^2+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(4x^2-8)+6x^2+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^2+8+6x^2+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2+38\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x^2-2\right) $ $$ \color{blue}{4} \cdot \left( x^2-2\right) = 4x^2-8 $$Multiply $ \color{blue}{6} $ by $ \left( x^2+5\right) $ $$ \color{blue}{6} \cdot \left( x^2+5\right) = 6x^2+30 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(4x^2-8 \right) = -4x^2+8 $$ |
③ | Combine like terms: $$ \color{blue}{-4x^2} + \color{red}{8} + \color{blue}{6x^2} + \color{red}{30} = \color{blue}{2x^2} + \color{red}{38} $$ |