Tap the blue circles to see an explanation.
$$ \begin{aligned}-4(2x^2+3x-6)+10& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(8x^2+12x-24)+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^2-12x+24+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-8x^2-12x+34\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( 2x^2+3x-6\right) $ $$ \color{blue}{4} \cdot \left( 2x^2+3x-6\right) = 8x^2+12x-24 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(8x^2+12x-24 \right) = -8x^2-12x+24 $$ |
③ | Combine like terms: $$ -8x^2-12x+ \color{blue}{24} + \color{blue}{10} = -8x^2-12x+ \color{blue}{34} $$ |