Tap the blue circles to see an explanation.
$$ \begin{aligned}-3xy(x^2x^3+2xy)& \xlongequal{ }-3xy(x^5+2xy) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^6y+6x^2y^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^6y-6x^2y^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3xy} $ by $ \left( x^5+2xy\right) $ $$ \color{blue}{3xy} \cdot \left( x^5+2xy\right) = 3x^6y+6x^2y^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^6y+6x^2y^2 \right) = -3x^6y-6x^2y^2 $$ |