Tap the blue circles to see an explanation.
$$ \begin{aligned}-3x(x+2y)(x+6y)& \xlongequal{ }-(3x^2+6xy)(x+6y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^3+18x^2y+6x^2y+36xy^2) \xlongequal{ } \\[1 em] & \xlongequal{ }-(3x^3+24x^2y+36xy^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^3-24x^2y-36xy^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x^2+6xy}\right) $ by each term in $ \left( x+6y\right) $. $$ \left( \color{blue}{3x^2+6xy}\right) \cdot \left( x+6y\right) = 3x^3+18x^2y+6x^2y+36xy^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^3+24x^2y+36xy^2 \right) = -3x^3-24x^2y-36xy^2 $$ |