Tap the blue circles to see an explanation.
$$ \begin{aligned}-3n^2(-2n^3+7n+4n)& \xlongequal{ }-3n^2(-2n^3+11n) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-6n^5+33n^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6n^5-33n^3\end{aligned} $$ | |
① | Multiply $ \color{blue}{3n^2} $ by $ \left( -2n^3+11n\right) $ $$ \color{blue}{3n^2} \cdot \left( -2n^3+11n\right) = -6n^5+33n^3 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-6n^5+33n^3 \right) = 6n^5-33n^3 $$ |