Tap the blue circles to see an explanation.
$$ \begin{aligned}-3n^2(-2n^2+2n+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-6n^4+6n^3+12n^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6n^4-6n^3-12n^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3n^2} $ by $ \left( -2n^2+2n+4\right) $ $$ \color{blue}{3n^2} \cdot \left( -2n^2+2n+4\right) = -6n^4+6n^3+12n^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-6n^4+6n^3+12n^2 \right) = 6n^4-6n^3-12n^2 $$ |