Tap the blue circles to see an explanation.
$$ \begin{aligned}-3n(n^2+2n)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3n^3+6n^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3n^3-6n^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3n} $ by $ \left( n^2+2n\right) $ $$ \color{blue}{3n} \cdot \left( n^2+2n\right) = 3n^3+6n^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3n^3+6n^2 \right) = -3n^3-6n^2 $$ |