Tap the blue circles to see an explanation.
$$ \begin{aligned}-3a^5c^4(9c^6-2a+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(27a^5c^{10}-6a^6c^4+12a^5c^4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-27a^5c^{10}+6a^6c^4-12a^5c^4\end{aligned} $$ | |
① | Multiply $ \color{blue}{3a^5c^4} $ by $ \left( 9c^6-2a+4\right) $ $$ \color{blue}{3a^5c^4} \cdot \left( 9c^6-2a+4\right) = 27a^5c^{10}-6a^6c^4+12a^5c^4 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(27a^5c^{10}-6a^6c^4+12a^5c^4 \right) = -27a^5c^{10}+6a^6c^4-12a^5c^4 $$ |