Tap the blue circles to see an explanation.
$$ \begin{aligned}-3.75+2(-4x+6.1)-3.25& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3.75-8x+12-3.25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x+9-3.25 \xlongequal{ } \\[1 em] & \xlongequal{ }-8x+9-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-8x+6\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( -4x+6\right) $ $$ \color{blue}{2} \cdot \left( -4x+6\right) = -8x+12 $$ |
② | Combine like terms: $$ \color{blue}{-3} -8x+ \color{blue}{12} = -8x+ \color{blue}{9} $$ |
③ | Combine like terms: $$ -8x+ \color{blue}{9} \color{blue}{-3} = -8x+ \color{blue}{6} $$ |