Tap the blue circles to see an explanation.
$$ \begin{aligned}-3(x+1)^2+5& \xlongequal{ }-3(x^2+2x+1)+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^2+6x+3)+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^2-6x-3+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x^2-6x+2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x^2+2x+1\right) $ $$ \color{blue}{3} \cdot \left( x^2+2x+1\right) = 3x^2+6x+3 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^2+6x+3 \right) = -3x^2-6x-3 $$ |
③ | Combine like terms: $$ -3x^2-6x \color{blue}{-3} + \color{blue}{5} = -3x^2-6x+ \color{blue}{2} $$ |