Tap the blue circles to see an explanation.
$$ \begin{aligned}-3(x-4)(2x+1)& \xlongequal{ }-(3x-12)(2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(6x^2+3x-24x-12) \xlongequal{ } \\[1 em] & \xlongequal{ }-(6x^2-21x-12) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6x^2+21x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x-12}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{3x-12}\right) \cdot \left( 2x+1\right) = 6x^2+3x-24x-12 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(6x^2-21x-12 \right) = -6x^2+21x+12 $$ |