Tap the blue circles to see an explanation.
$$ \begin{aligned}-3(x-2)(x+4)& \xlongequal{ }-(3x-6)(x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^2+12x-6x-24) \xlongequal{ } \\[1 em] & \xlongequal{ }-(3x^2+6x-24) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^2-6x+24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x-6}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{3x-6}\right) \cdot \left( x+4\right) = 3x^2+12x-6x-24 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^2+6x-24 \right) = -3x^2-6x+24 $$ |