Tap the blue circles to see an explanation.
$$ \begin{aligned}-3(3x-5)(4x+7)& \xlongequal{ }-(9x-15)(4x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(36x^2+63x-60x-105) \xlongequal{ } \\[1 em] & \xlongequal{ }-(36x^2+3x-105) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-36x^2-3x+105\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{9x-15}\right) $ by each term in $ \left( 4x+7\right) $. $$ \left( \color{blue}{9x-15}\right) \cdot \left( 4x+7\right) = 36x^2+63x-60x-105 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(36x^2+3x-105 \right) = -36x^2-3x+105 $$ |