Tap the blue circles to see an explanation.
$$ \begin{aligned}-3(-3x+5)+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-9x+15)+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x-15+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}9x-10\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( -3x+5\right) $ $$ \color{blue}{3} \cdot \left( -3x+5\right) = -9x+15 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-9x+15 \right) = 9x-15 $$ |
③ | Combine like terms: $$ 9x \color{blue}{-15} + \color{blue}{5} = 9x \color{blue}{-10} $$ |