Tap the blue circles to see an explanation.
$$ \begin{aligned}-2x^3(x+4)^2& \xlongequal{ }-2x^3(x^2+8x+16) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x^5+16x^4+32x^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x^5-16x^4-32x^3\end{aligned} $$ | |
① | Multiply $ \color{blue}{2x^3} $ by $ \left( x^2+8x+16\right) $ $$ \color{blue}{2x^3} \cdot \left( x^2+8x+16\right) = 2x^5+16x^4+32x^3 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x^5+16x^4+32x^3 \right) = -2x^5-16x^4-32x^3 $$ |