Tap the blue circles to see an explanation.
$$ \begin{aligned}-2x^2(3x^2-2x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(6x^4-4x^3-8x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6x^4+4x^3+8x^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{2x^2} $ by $ \left( 3x^2-2x-4\right) $ $$ \color{blue}{2x^2} \cdot \left( 3x^2-2x-4\right) = 6x^4-4x^3-8x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(6x^4-4x^3-8x^2 \right) = -6x^4+4x^3+8x^2 $$ |