Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(x+2)(x-3)(4x-3)& \xlongequal{ }-(2x+4)(x-3)(4x-3) \xlongequal{ } \\[1 em] & \xlongequal{ }-(2x^2-6x+4x-12)(4x-3) \xlongequal{ } \\[1 em] & \xlongequal{ }-(2x^2-2x-12)(4x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(8x^3-6x^2-8x^2+6x-48x+36) \xlongequal{ } \\[1 em] & \xlongequal{ }-(8x^3-14x^2-42x+36) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^3+14x^2+42x-36\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x^2-2x-12}\right) $ by each term in $ \left( 4x-3\right) $. $$ \left( \color{blue}{2x^2-2x-12}\right) \cdot \left( 4x-3\right) = 8x^3-6x^2-8x^2+6x-48x+36 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(8x^3-14x^2-42x+36 \right) = -8x^3+14x^2+42x-36 $$ |