Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(x-3y+2)-3(x-2y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x-6y+4)-(3x-6y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x+6y-4-(3x-6y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2x+6y-4-3x+6y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-5x+12y-4\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x-3y+2\right) $ $$ \color{blue}{2} \cdot \left( x-3y+2\right) = 2x-6y+4 $$Multiply $ \color{blue}{3} $ by $ \left( x-2y\right) $ $$ \color{blue}{3} \cdot \left( x-2y\right) = 3x-6y $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x-6y+4 \right) = -2x+6y-4 $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x-6y \right) = -3x+6y $$ |
④ | Combine like terms: $$ \color{blue}{-2x} + \color{red}{6y} -4 \color{blue}{-3x} + \color{red}{6y} = \color{blue}{-5x} + \color{red}{12y} -4 $$ |