Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(x-3)(x+2)(x-3)& \xlongequal{ }-(2x-6)(x+2)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ }-(2x^2+4x-6x-12)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ }-(2x^2-2x-12)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x^3-6x^2-2x^2+6x-12x+36) \xlongequal{ } \\[1 em] & \xlongequal{ }-(2x^3-8x^2-6x+36) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x^3+8x^2+6x-36\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x^2-2x-12}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{2x^2-2x-12}\right) \cdot \left( x-3\right) = 2x^3-6x^2-2x^2+6x-12x+36 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x^3-8x^2-6x+36 \right) = -2x^3+8x^2+6x-36 $$ |