Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(4x^2+5x)+x(x^2+6x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(8x^2+10x)+x^3+6x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^2-10x+x^3+6x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-2x^2-10x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 4x^2+5x\right) $ $$ \color{blue}{2} \cdot \left( 4x^2+5x\right) = 8x^2+10x $$Multiply $ \color{blue}{x} $ by $ \left( x^2+6x\right) $ $$ \color{blue}{x} \cdot \left( x^2+6x\right) = x^3+6x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(8x^2+10x \right) = -8x^2-10x $$ |
③ | Combine like terms: $$ \color{blue}{-8x^2} -10x+x^3+ \color{blue}{6x^2} = x^3 \color{blue}{-2x^2} -10x $$ |