Tap the blue circles to see an explanation.
$$ \begin{aligned}-18x^4+90 \cdot \frac{x^5}{15}x^5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-18x^4+\frac{90x^5}{15}x^5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-18x^4+\frac{90x^{10}}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{90x^{10}-270x^4}{15}\end{aligned} $$ | |
① | Step 1: Write $ 90 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 90 \cdot \frac{x^5}{15} & \xlongequal{\text{Step 1}} \frac{90}{\color{red}{1}} \cdot \frac{x^5}{15} \xlongequal{\text{Step 2}} \frac{ 90 \cdot x^5 }{ 1 \cdot 15 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 90x^5 }{ 15 } \end{aligned} $$ |
② | Step 1: Write $ x^5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{90x^5}{15} \cdot x^5 & \xlongequal{\text{Step 1}} \frac{90x^5}{15} \cdot \frac{x^5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 90x^5 \cdot x^5 }{ 15 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 90x^{10} }{ 15 } \end{aligned} $$ |
③ | Step 1: Write $ -18x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |