Tap the blue circles to see an explanation.
$$ \begin{aligned}-\frac{1}{3}(x+1)^2+1& \xlongequal{ }-\frac{1}{3}(x^2+2x+1)+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{x^2+2x+1}{3}+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x^2-2x+2}{3}\end{aligned} $$ | |
① | Step 1: Write $ x^2+2x+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot x^2+2x+1 & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{x^2+2x+1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x^2+2x+1 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2+2x+1 }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |