Tap the blue circles to see an explanation.
$$ \begin{aligned}-0.03(x-10)^2+x-10+25& \xlongequal{ }-0.03(x^2-20x+100)+x-10+25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(0x^2+0x+0)+x-10+25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}0x^2+0x+0+x-10+25 \xlongequal{ } \\[1 em] & \xlongequal{ }0x^20x0+x-10+25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x+15\end{aligned} $$ | |
① | Multiply $ \color{blue}{0} $ by $ \left( x^2-20x+100\right) $ $$ \color{blue}{0} \cdot \left( x^2-20x+100\right) = 0x^20x0 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(0x^20x0 \right) = 0x^20x0 $$ |
③ | Combine like terms: $$ 0x^2 \color{blue}{0x} \color{red}{0} + \color{blue}{x} \color{green}{-10} + \color{green}{25} = \color{blue}{x} + \color{green}{15} $$ |