Tap the blue circles to see an explanation.
$$ \begin{aligned}-(y-x)+6(5x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-y+x+6(5x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-y+x+30x+42 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}31x-y+42\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left(y-x \right) = -y+x $$ |
② | Multiply $ \color{blue}{6} $ by $ \left( 5x+7\right) $ $$ \color{blue}{6} \cdot \left( 5x+7\right) = 30x+42 $$ |
③ | Combine like terms: $$ -y+ \color{blue}{x} + \color{blue}{30x} +42 = \color{blue}{31x} -y+42 $$ |