Tap the blue circles to see an explanation.
$$ \begin{aligned}-(x+1)(x+4)(x+9)& \xlongequal{ }-(x^2+4x+x+4)(x+9) \xlongequal{ } \\[1 em] & \xlongequal{ }-(x^2+5x+4)(x+9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(x^3+9x^2+5x^2+45x+4x+36) \xlongequal{ } \\[1 em] & \xlongequal{ }-(x^3+14x^2+49x+36) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^3-14x^2-49x-36\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+5x+4}\right) $ by each term in $ \left( x+9\right) $. $$ \left( \color{blue}{x^2+5x+4}\right) \cdot \left( x+9\right) = x^3+9x^2+5x^2+45x+4x+36 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(x^3+14x^2+49x+36 \right) = -x^3-14x^2-49x-36 $$ |