Tap the blue circles to see an explanation.
$$ \begin{aligned}-(x+1)(x-1)(x-4)& \xlongequal{ }-(x^2-x+x-1)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ }-(x^2-1)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(x^3-4x^2-x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^3+4x^2+x-4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2-1}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x^2-1}\right) \cdot \left( x-4\right) = x^3-4x^2-x+4 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(x^3-4x^2-x+4 \right) = -x^3+4x^2+x-4 $$ |