Tap the blue circles to see an explanation.
$$ \begin{aligned}-\frac{x-2.5}{2}(8x-20)(x-2.5)+\frac{25}{2}(\frac{5}{3}+x-2.5)-\frac{25}{3}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8x^2-36x+40}{2}(x-2.5)+\frac{25}{2}(\frac{3x+5}{3}-2.5)-\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{8x^3-52x^2+112x-80}{2}+\frac{25}{2}\frac{3x-1}{3}-\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{8x^3-52x^2+112x-80}{2}+\frac{75x-25}{6}-\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{24x^3-156x^2+411x-265}{6}-\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{24x^3-156x^2+361x-265}{6}\end{aligned} $$ | |
① | Step 1: Write $ 8x-20 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{2} \cdot 8x-20 & \xlongequal{\text{Step 1}} \frac{x-2}{2} \cdot \frac{8x-20}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( 8x-20 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^2-20x-16x+40 }{ 2 } = \frac{8x^2-36x+40}{2} \end{aligned} $$ |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
④ | Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^2-36x+40}{2} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{8x^2-36x+40}{2} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8x^2-36x+40 \right) \cdot \left( x-2 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^3-16x^2-36x^2+72x+40x-80 }{ 2 } = \frac{8x^3-52x^2+112x-80}{2} \end{aligned} $$ |
⑤ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
⑦ | Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^2-36x+40}{2} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{8x^2-36x+40}{2} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8x^2-36x+40 \right) \cdot \left( x-2 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^3-16x^2-36x^2+72x+40x-80 }{ 2 } = \frac{8x^3-52x^2+112x-80}{2} \end{aligned} $$ |
⑧ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{2} \cdot \frac{3x-1}{3} & \xlongequal{\text{Step 1}} \frac{ 25 \cdot \left( 3x-1 \right) }{ 2 \cdot 3 } \xlongequal{\text{Step 2}} \frac{ 75x-25 }{ 6 } \end{aligned} $$ |
⑨ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
⑩ | To add raitonal expressions, both fractions must have the same denominator. |
⑪ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
⑫ | To subtract raitonal expressions, both fractions must have the same denominator. |