Tap the blue circles to see an explanation.
$$ \begin{aligned}1+2(x+1)-3x(x+1)+x(x+1)(x-3)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1+2x+2-(3x^2+3x)+(x^2+x)(x-3)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x+3-(3x^2+3x)+(x^2+x)(x-3)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x+3-(3x^2+3x)+(x^3-3x^2+x^2-3x)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x+3-(3x^2+3x)+(x^3-2x^2-3x)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2x+3-(3x^2+3x)+x^4+5x^3-2x^3-10x^2-3x^2-15x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}2x+3-(3x^2+3x)+x^4+3x^3-13x^2-15x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}2x+3-3x^2-3x+x^4+3x^3-13x^2-15x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}-3x^2-x+3+x^4+3x^3-13x^2-15x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}x^4+3x^3-16x^2-16x+3\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x+1\right) $ $$ \color{blue}{2} \cdot \left( x+1\right) = 2x+2 $$Multiply $ \color{blue}{3x} $ by $ \left( x+1\right) $ $$ \color{blue}{3x} \cdot \left( x+1\right) = 3x^2+3x $$Multiply $ \color{blue}{x} $ by $ \left( x+1\right) $ $$ \color{blue}{x} \cdot \left( x+1\right) = x^2+x $$ |
② | Combine like terms: $$ \color{blue}{1} +2x+ \color{blue}{2} = 2x+ \color{blue}{3} $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+x}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x^2+x}\right) \cdot \left( x-3\right) = x^3-3x^2+x^2-3x $$ |
④ | Combine like terms: $$ x^3 \color{blue}{-3x^2} + \color{blue}{x^2} -3x = x^3 \color{blue}{-2x^2} -3x $$ |
⑤ | Multiply each term of $ \left( \color{blue}{x^3-2x^2-3x}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x^3-2x^2-3x}\right) \cdot \left( x+5\right) = x^4+5x^3-2x^3-10x^2-3x^2-15x $$ |
⑥ | Combine like terms: $$ x^4+ \color{blue}{5x^3} \color{blue}{-2x^3} \color{red}{-10x^2} \color{red}{-3x^2} -15x = x^4+ \color{blue}{3x^3} \color{red}{-13x^2} -15x $$ |
⑦ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x^2+3x \right) = -3x^2-3x $$ |
⑧ | Combine like terms: $$ \color{blue}{2x} +3-3x^2 \color{blue}{-3x} = -3x^2 \color{blue}{-x} +3 $$ |
⑨ | Combine like terms: $$ \color{blue}{-3x^2} \color{red}{-x} +3+x^4+3x^3 \color{blue}{-13x^2} \color{red}{-15x} = x^4+3x^3 \color{blue}{-16x^2} \color{red}{-16x} +3 $$ |