Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(x-9)-x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x-18)-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x+18-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x+18\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x-9\right) $ $$ \color{blue}{2} \cdot \left( x-9\right) = 2x-18 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x-18 \right) = -2x+18 $$ |
③ | Combine like terms: $$ \color{blue}{-2x} +18 \color{blue}{-x} = \color{blue}{-3x} +18 $$ |