Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{y^2-4y-5}{y^2+5y+4}\frac{y^2+4y}{y^2-25}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{y-5}{y+4}\frac{y^2+4y}{y^2-25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{y}{y+5}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{y+1}$. $$ \begin{aligned} \frac{y^2-4y-5}{y^2+5y+4} & =\frac{ \left( y-5 \right) \cdot \color{blue}{ \left( y+1 \right) }}{ \left( y+4 \right) \cdot \color{blue}{ \left( y+1 \right) }} = \\[1ex] &= \frac{y-5}{y+4} \end{aligned} $$ |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{y-5}{y+4} \cdot \frac{y^2+4y}{y^2-25} & \xlongequal{\text{Step 1}} \frac{ 1 \cdot \color{blue}{ \left( y-5 \right) } }{ 1 \cdot \color{red}{ \left( y+4 \right) } } \cdot \frac{ y \cdot \color{red}{ \left( y+4 \right) } }{ \left( y+5 \right) \cdot \color{blue}{ \left( y-5 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 }{ 1 } \cdot \frac{ y }{ y+5 } \xlongequal{\text{Step 3}} \frac{ 1 \cdot y }{ 1 \cdot \left( y+5 \right) } \xlongequal{\text{Step 4}} \frac{ y }{ y+5 } \end{aligned} $$ |