Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{(y^2+8y+7)(y^2+5y+6)}{(3y+9)(y^2+y)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{y^4+13y^3+53y^2+83y+42}{3y^3+3y^2+9y^2+9y} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{y^4+13y^3+53y^2+83y+42}{3y^3+12y^2+9y} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{y^2+9y+14}{3y}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{y^2+8y+7}\right) $ by each term in $ \left( y^2+5y+6\right) $. $$ \left( \color{blue}{y^2+8y+7}\right) \cdot \left( y^2+5y+6\right) = y^4+5y^3+6y^2+8y^3+40y^2+48y+7y^2+35y+42 $$ |
② | Combine like terms: $$ y^4+ \color{blue}{5y^3} + \color{red}{6y^2} + \color{blue}{8y^3} + \color{green}{40y^2} + \color{orange}{48y} + \color{green}{7y^2} + \color{orange}{35y} +42 = \\ = y^4+ \color{blue}{13y^3} + \color{green}{53y^2} + \color{orange}{83y} +42 $$ |
③ | Multiply each term of $ \left( \color{blue}{3y+9}\right) $ by each term in $ \left( y^2+y\right) $. $$ \left( \color{blue}{3y+9}\right) \cdot \left( y^2+y\right) = 3y^3+3y^2+9y^2+9y $$ |
④ | $$ 3y^3+ \color{blue}{3y^2} + \color{blue}{9y^2} +9y = 3y^3+ \color{blue}{12y^2} +9y $$ |
⑤ | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{y^2+4y+3}$. $$ \begin{aligned} \frac{y^4+13y^3+53y^2+83y+42}{3y^3+12y^2+9y} & =\frac{ \left( y^2+9y+14 \right) \cdot \color{blue}{ \left( y^2+4y+3 \right) }}{ 3y \cdot \color{blue}{ \left( y^2+4y+3 \right) }} = \\[1ex] &= \frac{y^2+9y+14}{3y} \end{aligned} $$ |