Tap the blue circles to see an explanation.
$$ \begin{aligned}(z+3)\frac{z-4}{z}(z-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{z^2-z-12}{z}(z-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{z^3-4z^2-9z+36}{z}\end{aligned} $$ | |
① | Step 1: Write $ z+3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} z+3 \cdot \frac{z-4}{z} & \xlongequal{\text{Step 1}} \frac{z+3}{\color{red}{1}} \cdot \frac{z-4}{z} \xlongequal{\text{Step 2}} \frac{ \left( z+3 \right) \cdot \left( z-4 \right) }{ 1 \cdot z } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ z^2-4z+3z-12 }{ z } = \frac{z^2-z-12}{z} \end{aligned} $$ |
② | Step 1: Write $ z-3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{z^2-z-12}{z} \cdot z-3 & \xlongequal{\text{Step 1}} \frac{z^2-z-12}{z} \cdot \frac{z-3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( z^2-z-12 \right) \cdot \left( z-3 \right) }{ z \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ z^3-3z^2-z^2+3z-12z+36 }{ z } = \frac{z^3-4z^2-9z+36}{z} \end{aligned} $$ |