Tap the blue circles to see an explanation.
$$ \begin{aligned}(y-\frac{a}{3})^3+a(y-\frac{a}{3})^2+b(y-\frac{a}{3})+c& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(y-\frac{a}{3})^3+a(y-\frac{a}{3})^2+b\frac{-a+3y}{3}+c \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(y-\frac{a}{3})^3+a(y-\frac{a}{3})^2+\frac{-ab+3by}{3}+c\end{aligned} $$ | |
① | Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ b $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} b \cdot \frac{-a+3y}{3} & \xlongequal{\text{Step 1}} \frac{b}{\color{red}{1}} \cdot \frac{-a+3y}{3} \xlongequal{\text{Step 2}} \frac{ b \cdot \left( -a+3y \right) }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -ab+3by }{ 3 } \end{aligned} $$ |