Tap the blue circles to see an explanation.
$$ \begin{aligned}(y-8)(y+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}y^2+8y-8y-64 \xlongequal{ } \\[1 em] & \xlongequal{ }y^2+ \cancel{8y} -\cancel{8y}-64 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^2-64\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{y-8}\right) $ by each term in $ \left( y+8\right) $. $$ \left( \color{blue}{y-8}\right) \cdot \left( y+8\right) = y^2+ \cancel{8y} -\cancel{8y}-64 $$ |
② | Combine like terms: $$ y^2+ \, \color{blue}{ \cancel{8y}} \, \, \color{blue}{ -\cancel{8y}} \,-64 = y^2-64 $$ |