Tap the blue circles to see an explanation.
$$ \begin{aligned}(y-5)(y+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}y^2+5y-5y-25 \xlongequal{ } \\[1 em] & \xlongequal{ }y^2+ \cancel{5y} -\cancel{5y}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^2-25\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{y-5}\right) $ by each term in $ \left( y+5\right) $. $$ \left( \color{blue}{y-5}\right) \cdot \left( y+5\right) = y^2+ \cancel{5y} -\cancel{5y}-25 $$ |
② | Combine like terms: $$ y^2+ \, \color{blue}{ \cancel{5y}} \, \, \color{blue}{ -\cancel{5y}} \,-25 = y^2-25 $$ |