Tap the blue circles to see an explanation.
$$ \begin{aligned}x+y-5(x+y+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x+y-(5x+5y+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x+y-5x-5y-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4x-4y-25\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( x+y+5\right) $ $$ \color{blue}{5} \cdot \left( x+y+5\right) = 5x+5y+25 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x+5y+25 \right) = -5x-5y-25 $$ |
③ | Combine like terms: $$ \color{blue}{x} + \color{red}{y} \color{blue}{-5x} \color{red}{-5y} -25 = \color{blue}{-4x} \color{red}{-4y} -25 $$ |