Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+y)(x+y+w)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+xy+wx+xy+y^2+wy \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}wx+wy+x^2+2xy+y^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+y}\right) $ by each term in $ \left( x+y+w\right) $. $$ \left( \color{blue}{x+y}\right) \cdot \left( x+y+w\right) = x^2+xy+wx+xy+y^2+wy $$ |
② | Combine like terms: $$ x^2+ \color{blue}{xy} +wx+ \color{blue}{xy} +y^2+wy = wx+wy+x^2+ \color{blue}{2xy} +y^2 $$ |