Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+h-1)(x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-x+hx-h-x+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx+x^2-h-2x+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+h-1}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x+h-1}\right) \cdot \left( x-1\right) = x^2-x+hx-h-x+1 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-x} +hx-h \color{blue}{-x} +1 = hx+x^2-h \color{blue}{-2x} +1 $$ |