Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+h-1)(x^2+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+2x+hx^2+2h-x^2-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx^2+x^3-x^2+2h+2x-2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+h-1}\right) $ by each term in $ \left( x^2+2\right) $. $$ \left( \color{blue}{x+h-1}\right) \cdot \left( x^2+2\right) = x^3+2x+hx^2+2h-x^2-2 $$ |
② | Combine like terms: $$ hx^2+x^3-x^2+2h+2x-2 = hx^2+x^3-x^2+2h+2x-2 $$ |