Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+d)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+3dx^2+3d^2x+d^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}d^3+3d^2x+3dx^2+x^3\end{aligned} $$ | |
① | Find $ \left(x+d\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = d $. $$ \left(x+d\right)^3 = x^3+3 \cdot x^2 \cdot d + 3 \cdot x \cdot d^2+d^3 = x^3+3dx^2+3d^2x+d^3 $$ |
② | Combine like terms: $$ d^3+3d^2x+3dx^2+x^3 = d^3+3d^2x+3dx^2+x^3 $$ |