Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+8)(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+3x+8x+24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+11x+24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+8}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x+8}\right) \cdot \left( x+3\right) = x^2+3x+8x+24 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{3x} + \color{blue}{8x} +24 = x^2+ \color{blue}{11x} +24 $$ |