Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+8)(2x^2-3x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3-3x^2+16x^2-24x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3+13x^2-24x\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+8}\right) $ by each term in $ \left( 2x^2-3x\right) $. $$ \left( \color{blue}{x+8}\right) \cdot \left( 2x^2-3x\right) = 2x^3-3x^2+16x^2-24x $$ |
② | Combine like terms: $$ 2x^3 \color{blue}{-3x^2} + \color{blue}{16x^2} -24x = 2x^3+ \color{blue}{13x^2} -24x $$ |