Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+6)(7x^2-7x-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}7x^3-7x^2-8x+42x^2-42x-48 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x^3+35x^2-50x-48\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+6}\right) $ by each term in $ \left( 7x^2-7x-8\right) $. $$ \left( \color{blue}{x+6}\right) \cdot \left( 7x^2-7x-8\right) = 7x^3-7x^2-8x+42x^2-42x-48 $$ |
② | Combine like terms: $$ 7x^3 \color{blue}{-7x^2} \color{red}{-8x} + \color{blue}{42x^2} \color{red}{-42x} -48 = 7x^3+ \color{blue}{35x^2} \color{red}{-50x} -48 $$ |